Mobile App Development: A Cross-Discipline Team-Based Approach to Student and Faculty Learning

Sarvesh S. Kulkarni*, Frank Klassner, Vijay Gehlot, E. J. Dougherty III, Sue McFarland Metzger and William P. Wagner

Abstract: Technical courses taught in a university setting are academically rigorous in a given subject area. However, students do not usually get an adequate sense of how the professionals in their field interact with their counterparts in other professions in the real world. The aim of our cross-disciplinary “Mobile App Development” course is to remedy this missed opportunity by providing an opportunity for students and faculty members from three different disciplines (engineering, computer science, and business) to experience and learn the nuances of each other’s’ fields, while simultaneously introducing the concept of entrepreneurship. Such an unorthodox mix of students sharing a single classroom calls for non-traditional teaching strategies and evaluation techniques. This paper discusses those techniques, the challenges involved in meeting the stated outcomes, and three iterations of refinements in the evolution of the course leading up to its current format. An interesting aspect of the course is that each cross-disciplinary student team is expected to deliver a “close-to-market” mobile application product by the end of the course that is jointly assessed by the course professors and external judges from industry. Lastly, although this course requires significant teaching effort, the instructors, the participating students, and our university are convinced that the benefits of such collaborative learning are worthy of further investments.

1. Introduction

As early as 1916, John Dewey propounded the complementary ideas of experiential learning and interdisciplinary learning (Dewey, 1916). Hilda Taba, a student of Dewey's, expanded the field of progressive learning by introducing inductive and creative learning techniques (Taba et al., 1971). Students were encouraged to organize related concepts from two or more diverse fields of learning into groups. In more recent years, Ackerman and Perkins (1989) embraced and reinforced this theme using a combination of discipline-specific as well as complementary interdisciplinary learning techniques. Furthermore, they emphasized the importance of interweaving skills and knowledge-based content in the learning process.

Today, many university programs try to integrate experiential and interdisciplinary learning in their curricula. For instance, some courses attempt to introduce experiential learning through interdisciplinary projects (Caverly et al., 2010). Others teach loosely related topics using a unifying theme in fields such psychology (Sternberg & Pardo, 1998) and biology (Offner, 1992). In our home institution (Villanova University), most inter-disciplinary courses usually focus on the depth of specific content in a couple of disciplines rather than the breadth, i.e., integration of content across a variety of disciplines. More specifically, all students taking such an interdisciplinary course are required to master the skills and the content equally well regardless of their core discipline. For instance, in the course on game development

DOI: 10.7814/jeenv6n2p5
* Villanova University
offered at Villanova University, students studying graphic arts are expected to write programs along with their computer science counterparts. In a similar manner, in our university’s course on bioinformatics, students of computer science are expected to be as proficient in genetics as their peers studying biology. Such expectations inhibit diverse student participation. Thus, cross-pollination of ideas among students of diverse disciplines is not easily achieved. In the real world, it is more reasonable to expect that when working in a team, team members are experts in their specific fields, but are less familiar in other areas. Consequently, as a practical matter, project leaders strive for diversity in a team's aggregate expertise rather than relying on a few superhuman members with diverse skill sets.

Many engineers and scientists believe that a great idea sells itself regardless of market dynamics. The failure to fully understanding how a business functions may lead to adversarial relationships between technical employees and their business-oriented colleagues (Weinrauch & Anderson, 1982; Crittenden et al., 1993). Similarly, when business managers interact with their technical employees, they often do not fully appreciate the complex nature of the technical development process and the numerous unforeseen challenges on the way to a successful product.

Therefore, in designing and refining a course for students with diverse academic backgrounds, we seek to help them achieve the following thematic goals: (a) learn a variety of interconnected topics through experiential means while contributing significantly in their area of expertise, (b) interact with other students with very different academic backgrounds in a classroom/laboratory setting and, (c) develop empathy towards, and a greater understanding of each other’s’ professions by “walking in each other’s shoes” in a cross-disciplinary team-taught course. In addition, student groups are encouraged to propose and select their own semester-long course projects that directly complement these thematic goals. Thus, in accordance with Dewey’s (1916) main ideas, we not only attempt to emulate a real world cross-disciplinary experiential learning environment, but also democratize the project selection process in order to enhance the students’ investment in their work. Furthermore, in accordance with the ideas put forth in Ackerman and Perkins (1989), we interweave class instruction (knowledge-based content) with project work (skills) in order to facilitate learning.

This article describes the initial design and the iterative refinement of our cross-disciplinary “Mobile App Development” course over a period of three years. A preliminary version of this work was published in 2014 (Kulkarni et al., 2014). The rest of this article is organized as follows: (a) section two outlines the reasons for selecting mobile app development as the course’s unifying theme; (b) section three discusses the practical constraints that we placed on our course in addition to the thematic goals listed above; (c) section four describes the objectives, organization, syllabus and pedagogical approach that we designed for the initial course offering in Spring 2010, as well as the assessment of the course; (d) section five describes the refinements incorporated in the second offering of the course based on the assessment of the first offering, as well as its own assessment; (e) section six describes the further refined, third offering of the course based on assessment of the second offering, and its own assessment; and (f) we conclude the paper by discussing the salient points of the course and providing some assessment-based inferences.

2. Course Topic Selection

A mobile app development course is a good candidate for a cross-disciplinary effort since it involves a combination of both technical and non-technical topics. For instance, in order to successfully develop an application (app), one needs to learn at least three or four of the following: mobile application programming on at least one of two different platforms (Android and iOS), complementary data structures, user interface design, networking and communication, the use of on-board sensors, and security. In order to successfully sell such an app, one needs to be entrepreneurial in analyzing the market need and its potential size, then constructing a business plan, exploring avenues for developmental funding and revenues, and designing a marketing strategy. In addition, one also needs to hone one’s soft
skills such as presentation of ideas to appeal to a group of investors and the complementary one-minute “elevator pitch.”

Furthermore, from an entrepreneurial perspective, mobile app products have a low barrier to entry in the marketplace. The initial platform investment consists of a smartphone, which most students already possess, and a software development kit with a developer's license (free for Android, under $100 per year for iOS). Once the app is ready, the vendor running the app store provides free hosting services and payment. This eliminates any up-front cost and time overhead incurred by the developer to set up a storefront and a payment processing system. Therefore, such a system is ideal for small development teams with a low startup budget.

Clearly, a course using mobile apps as the unifying theme weaves many individual, diverse subtopics together and presents a very good opportunity for students to experience the intricacies of each other’s disciplines; it allows them to work closely with students of a different mindset and gain a better understanding of viewpoints other than their own. Such a course naturally lends itself to team-teaching and requires a combination of traditional and unconventional student- and course-evaluation techniques that mirror the academic as well as the real world. As a practical matter, the course is housed in the Department of Computing Sciences, but brings together faculty and students from disciplines in three colleges: College of Engineering (electrical and computer engineering majors), College of Liberal Arts and Sciences (computer science majors), and Business School (various business majors). The following section describes the features that were maintained across all offerings of our “Mobile App Development” course.

3. Overarching Course Design Features

An entrepreneurial theme is considered essential to the “Mobile App Development” course; there are guest lectures by entrepreneurs and industry practitioners on topics such as business plans, creative thinking, project management techniques, and technical trends in the app industry. Students are also challenged to understand that no matter how technically “showy” their app ideas are, they must be adapted to market trends and user acceptability testing. In addition, students need to realize that this requirement must be met, even if they are developing apps for a large corporation’s captive in-house audience; managers will not want to invest person-months on projects that will not be used because the design did not take the corporate culture into account.

The course also benefits from a semester-long project that is proposed and implemented by multi-disciplinary teams of students. The teams are responsible for justifying their interface design, marketing strategy, and implementation based on technical considerations as well as on business and entrepreneurial research. By the end of the course, students are expected to deliver a “close-to-market” mobile application product along with a business plan for the monetization of their product. During the project, each participant observes and experiences the nuances of the others’ fields: in developing their product, business students sometimes program, but always exert influence on the app design from a usability and marketability perspective, while engineering and computer science students help develop business and marketing plans with advice on what is technically feasible. Computer engineering and computer science students learn about the harsh realities of business decisions, and business majors learn the technological challenges, limitations, and thought processes that go into designing a technical product.

The course approximates a platform-neutral environment initially by supporting both iOS and Android and later also HTML5 for several reasons. First, the overhead of trying to purchase enough of each year’s latest smartphone and tablet models for a class of thirty students would overwhelm our financial resources, therefore, students use their own devices for development. This would inevitably lead to biases in their platform choices without a concerted platform-neutral approach. The course attracted enough
attention for Verizon Wireless to contribute five free mobile phones with unlimited data plans for use by those who do not own smartphones. Second, given the multi-platform nature of the mobile app field, we feel that it is important for students to experience one long-term project on a single platform and still gain some familiarity with other platforms to objectively evaluate platform suitability for future projects. Third, students from each college come with different programming backgrounds: some have primary programming experience in C++, while others are proficient in Java, Visual Basic, or JavaScript.

The instructors are rotated year to year within each contributing department to allow the department chairs some flexibility in their teaching schedules. Each instructor is experienced in at least one of the development platforms. The maximum enrollment is thirty students, with the constraint that no more than ten students may be drawn from any one discipline during initial registration. After the initial three-week registration period, this constraint is lifted. This practice ensures that students from all three disciplines get a fair share of the available seats. It also supports the creation of diverse development teams with one student from each college per team.

In order to support the course goal of fostering entrepreneurial thinking, instructors discuss the nature of entrepreneurship with students using definitions such as “working to meet people’s needs before people realize they have the need” and Stevenson’s (1983) classic, “the pursuit of opportunity without regard to resources currently controlled.” After discussing several case studies, students are invited to identify opportunities within the mobile app arena: what needs do they think that they, their peers, or their families have that could be addressed with apps and/or how could existing apps be improved to better meet consumers’ needs? In the first two course offerings, students discussed their ideas and formed their own teams within the group membership policy presented earlier in this section. In the third and fourth course offerings, we formalized the team creation process by encouraging students to post their reflections on an “Idea Bounce” blog; the students then “pitched” their app ideas in class, and listed their three best ideas in order of preference. The instructors then matched students to create teams based on these preference lists.

In addition, instructors provide general advice about categories of resources a team might need for its project. However, in keeping with the Stevenson’s (1983) entrepreneurship definition, each team is expected to identify and seek out the specific resources they need for building their app (e.g., programming skills, developer licenses and tools, artwork, database servers, etc.). In the course in its current form, student teams are also required to make engaging formal pitches (e.g., video promotions, acting, video editing, elevator pitches, and app demonstrations) at the Student Entrepreneurship Competition (SEC) for a panel of business leaders, venture capitalists, and entrepreneurs drawn from across the country.

4. First Course Offering

This section describes the design of our course and highlights its entrepreneurship-focused project-centric, cross-disciplinary learning approach. The course description here will also be the basis for describing what changes were made in later offerings and why they were made. Therefore, sections five and six will only highlight the modifications from the first course offering.

4.1. Course Design

The spring 2011 “Mobile App Development” course was announced with the following goals: (a) to foster entrepreneurial thinking; (b) to create awareness that a real-life approach to product development spans multiple disciplines, and (c) to demonstrate the value of collaborating with peers across disciplines to champion one’s vision—success is not guaranteed, but it is not incidental either.
Mobile App Development: A Cross-Discipline Team-Based Approach to Student and Faculty Learning

There were two weekly 75-minute class sessions. In each week, one session was dedicated to classroom instruction, and the majority of the other session was dedicated to student team development, with faculty available for consultation on the teams’ programming questions. Instructors took turns teaching discipline-specific topics in modular styles. All instructors attended every class along with the students and participated in class discussions, regardless of which instructor was scheduled to present a lecture. The intent was to convey the message to the students that topics outside their fields are just as important as those within their fields for success in the course. There were three guest lectures from entrepreneurs in the local Philadelphia mobile app startup community. Students were expected to write summaries of these presentations and critique them for style and content in the following class session.

The main topics for lecture presentations and their presentation order were: (a) programming apps in Android or iOS platforms and platform emulators; (b) comparison of the iOS and the Android platforms, (c) design and implementation of a clean and coherent user interface (UI); (d) market analysis and entrepreneurial opportunities; (e) business plans, product marketing, and monetization; (f) device communication using Bluetooth and TCP/IP protocols; (g) accessing and using data from smartphone sensors; (h) intellectual property rights, agreements, and responsibilities; (i) comparison of web/HTML5 apps with and native apps; and (j) effective techniques in pitching products to potential investors, with full rehearsals. In addition, supplemental lectures on security were added later upon students’ request. No required course text was specified.

The second session each week was designated for work on team projects. In the initial few weeks of the semester, the emphasis in these sessions was on organizing the app ideas and creating rough implementations of the app interfaces using standard layout schemes as much as possible in Android and iOS. Later, teams used this time period for writing “Project Milestone” assignment reports, developing business plans, and integrating code from extracurricular team meetings and code libraries available on the Internet.

A core component of the course was a semester-long group project that included a complete life-cycle of app development from idea, to business plan, to coding and market feasibility. Central to the project was the cross-disciplinary, experiential learning component; therefore, the execution of the team project required the students to perform the initial steps in a timely fashion. Students were required to form teams comprised of three members, each from a different discipline. They then selected either the Android or the iOS platform for their projects, and proposed an app idea along with a set of features for implementation. The proposals were evaluated by the instructors for technical and economic feasibility. Based on the feedback they received, the teams either revised the scope and focus of the project, or proposed an alternative one.

Students’ grades were weighted as follows: 20% on project milestones, 30% on the semester-long project, 20% on the mid-term examination, 20% on the final examination, and 10% for class participation. Thus, 50% of their grade depended on the project. Students were advised that their project grade would depend on the state of completion of their apps based on their second-draft proposals; if promised features were missing, significantly lower grades would be awarded. Students were allowed to form their own teams. They were discouraged from choosing games as their app idea since game apps tend to require extensive graphics skills and design time; the instructors felt that one semester was too short a time-frame for students with varying programming and design experience to complete a plausibly compelling game app.

Examinations were designed to be uniform for the course population, which meant that students were responsible for assimilating subject material from outside their major discipline. The examination questions were vetted by all three instructors to ensure they were not over-dependent on any narrow discipline-specific areas covered outside of the mobile app development course.
Once the project selections were finalized, the students undertook a broader market study to determine the features in their app deemed to be absolutely essential. Other features that brought a competitive advantage to their app vis-a-vis other market competitors were prioritized. Next, students designed the screen art, the user interface (UI) screens, and created mock-ups using free-hand sketches or computer-based tools. The instructors then evaluated the UI designs for aesthetics as well as usability i.e., color visibility of and contrast between UI elements, placement of buttons, the readability of labels, coherence of themes, logical grouping of app controls, etc. Student teams were expected to take this feedback into account when refining their UI.

The development of a business plan proceeded in parallel with the app development activity. The student teams had to identify and study the potential market for their app, determine market positioning of the app, perform a strength-weakness-opportunities-threat (SWOT) analysis, and identify and project revenue streams, costs, required financing, and the breakeven point. Thus, the intricate interweaving of business and technical topics during the execution of the project provided an opportunity for very close interaction among all team members.

At the end of the semester, all team members had to provide a demonstration of their working app along with the business plan to the entire class, faculty, and selected external reviewers. Each project was evaluated by faculty and external reviewers on metrics such as the degree of completion, aesthetic appeal of the UI, the workability of the business plan, and the quality and appeal of the presentation to potential investors.

4.2. Assessment

We used a variety of formal and informal assessment techniques in order to examine whether our course goals were being met. We then used the results of the assessment to refine the course content and focus on subsequent offerings.

For year one, we relied on the generic year-end Course and Teacher Survey (CATS) forms administered by Villanova University for instruction-related data about the course. However, these questions did not address any course-specific goals. For subsequent offerings we created a separate anonymous, course-specific survey for students. A sample of these questions is given in Table 1 in Section 5.2. In addition, in years two and three, internal and external judges assessed entrepreneurship-related outcomes using a separate set of criteria (see Table 2 in Section 5.2).

Although course specific survey data was not available in year one, we did use the written comments on the CATS to assess the problem areas and revise the second offering. In these comments, the students expressed their opinion that there was a very large variation in the programming capabilities of their peers on any given platform.

5. Second Course Offering

5.1. Course Refinements

In order to reduce the disparity associated with programming skills, we decided to include mandatory programming exercises for all students based on AppInventor (Wolber et al., 2011), which is an easy to use, Android-based, automated platform for building mobile applications (an equivalent aid was unavailable for iOS). The objective was to provide some practice to all students to implement a small app in preparation for their course project. Later, however, students were free to choose (and they did choose) any platform for their course project.
The introduction of AppInventor allowed us to increase the frequency of deliverables, enforce stricter milestones, and identify unmotivated students. However, it required a disproportionate amount of instructional resources for platform maintenance, and diverted attention from the key focus of the course. We found that students still chose platforms emotionally, not rationally; their comments indicated that they still saw themselves in traditional roles in alignment with their majors. However, the silos did break down somewhat and AppInventor did help business students (only business students agreed with the question “it was useful to explore the mobile platform via AppInventor projects” on the course survey). We had prepared extra material for presentation in advance. These planning averted lost class sessions due to last-minute guest speaker cancellations.

In order to provide the students a real-world experience, we linked project presentations with a university-wide entrepreneurial competition called the “pitch day.” Student teams (groups) were required to pitch their ideas and working demonstrations to external judges from a pool of entrepreneurs, business leaders, industry practitioners, and even venture capitalists. All student groups had working demonstrations for the pitch day, which exceeded even our expectations. Critiques and comments collected from external judges indicated that they were rather impressed with the groups’ achievements.

5.2. Assessment

In year two, in addition to CATS surveys, we created a separate anonymous survey containing questions specific to course goals and design. A sample of these questions is shown in Table 1. For each question, a range of responses from “Strongly Agree” to “Strongly Disagree” were collected and analyzed. These questions were designed to address course-specific goals including the team-based multidisciplinary approach as well as platform neutrality.

Table 1. Sample Questions from Anonymous Survey Used in Years Two and Three

<table>
<thead>
<tr>
<th>Question ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>The course met the goal for me to learn about the business of mobile app development.</td>
</tr>
<tr>
<td>14</td>
<td>The course met the goal for me to learn how to program a mobile app.</td>
</tr>
<tr>
<td>15</td>
<td>It was important to me to have the option of working with the Android or iOS platforms.</td>
</tr>
<tr>
<td>19</td>
<td>It was valuable to hear what entrepreneurs are doing in the area of mobile apps.</td>
</tr>
<tr>
<td>22</td>
<td>The course met the goal for me to learn about how to write a business plan.</td>
</tr>
<tr>
<td>26</td>
<td>The course met the goal for me to learn how to design user interfaces for mobile apps.</td>
</tr>
<tr>
<td>30</td>
<td>The course met the goal for me to learn about the strategy and marketing behind mobile app development.</td>
</tr>
<tr>
<td>31</td>
<td>It was valuable to me to work with team members from other colleges.</td>
</tr>
</tbody>
</table>

The summary of results for selected questions in Table 1 is given in Figure 1 below. In compiling this data, for the purpose of current discussion, we have collapsed “Strongly Agree,” “Agree,” etc. into one category called “Agree.” Similarly, “Strongly Disagree,” “Disagree,” etc. have been merged into just the “Disagree” category.

Question IDs (QIDs) 12, 19, 22, and 30 were designed to address the business and entrepreneurship aspects of mobile app development. The response to QID 22 indicated that the course failed to adequately address the details of writing a business plan. It was imperative to correct this shortcoming in year three. Responses to QID 30 identified similar concerns in the study of strategy and marketing behind mobile application development. Responses to QID 31 indicate that we were successful in making the course team-based and multidisciplinary. The introduction of AppInventor did help augment the

Volume 6, Number 2 - 2015
programming capabilities of business students, but the class as a whole was divided in terms of their learning goals in this regard (QID 14).

Figure 1. Course Goals Survey Results, Spring 2012

The pitch day (described in Section 5.1) at Villanova University provided a synergistic avenue for our students to pitch their apps and gain impartial feedback from both internal and external judges. Evaluation criteria were provided to all judges. The three selected evaluation criteria that specifically evaluated entrepreneurship-related learning outcomes are listed in Table 2 and were based on the concepts outlined by Stevenson (1983).

Table 2. Sample Pitch-Day Evaluation Criteria for Entrepreneurship

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype Evaluation</td>
<td>How mature is the concept? Is the key functionality complete; has it been demonstrated? Is the product tested and usable?</td>
</tr>
<tr>
<td>Business Plan</td>
<td>Are market assumptions reasonable and correct? How do you rate competitive analysis, feasibility, market strategy, and appeal of the product?</td>
</tr>
<tr>
<td>Business Value</td>
<td>Does this idea/execution have potential? Would you invest? Is there anything that stood out?</td>
</tr>
</tbody>
</table>

Figures 2 a–c show the minimum, maximum, and average scores awarded to each group by the judges on a 10-point scale (10 being the highest) to the pitched apps according to the criteria listed above. G1 through G5 on the x axis refer to student groups.
Figure 2a. Pitch-Day Prototype Evaluation, Spring 2012

Figure 2b. Pitch-Day Business Plan Evaluation, Spring 2012

Figure 2c. Pitch-Day Business Value Evaluation, Spring 2012
The graphs in the figures indicate that most groups achieved better than average scores on all three evaluation criteria. If we ignore the poorest performing group (G4), it is apparent that while the technical prototypes are rather well received, the average scores on business plans and value evaluations are just above average and need improvement. Therefore, the students seem to have focused most of their attention on getting the app functional, but did not spend as much effort on the business aspects of their work.

6. Third Course Offering

6.1. Course Refinements

One evolution has been the addition of a two-week, three-way mini-project in the third offering that sets up three-member student teams and introduces all students on a team to all platforms through demonstrations and discussions of their experiences implementing the same mini-project three ways (one student per platform). It runs concurrently with the early part of the course when students are in the process of selecting their semester-long project and development platform. We plan to expand this mini-project to a three-week project in the fourth offering of the course. Furthermore, on account of the weak business focus as evidenced in the pitch day evaluations of group projects, the instructors have stressed the importance of this aspect and made additional business and marketing material available to students. Each student group is afforded an opportunity to rehearse its pitch in front of its peer groups and faculty, and is provided constructive feedback.

Since each student group can work on a different project of its own choosing, some teams need to learn additional subject matter that is not taught in class. For instance, the use of a gyroscope in conjunction with an accelerometer for detection of linear and angular motion requires the fusion of data from these sensors, a considerably complex topic. It requires an understanding of how these sensors work, their limitations, and the physics involved. Such a topic is well outside the scope of the class; however, in such instances, the instructors create notes and examples and post them online for self-study for interested students. Over time, and over multiple offerings of the course, the knowledge base has grown more comprehensive.

6.2. Assessment

As in year two, we collected data from a course specific survey in year three. The summary of results for selected questions in Table 1 is given in Figure 3.
Here we see an even stronger evidence of students recognizing the value of a team-based and multidisciplinary approach to learning (QID 31) and entrepreneurship (QID 19). Again, we see that the class opinion is divided on the development of their mobile programming skills (QID 14). Our analysis of the responses to QID 14 is that when answering this question, students are assessing their own individual capability and not necessarily the capability of the team as a whole. We intend to rephrase this question in the future to clarify the matter.

The entrepreneurship-related learning outcomes were assessed again in 2013 on pitch day. Judges used a 5-point scale (5 being the highest) to evaluate each student group as per the three criteria identified in Table 2. Figures 4 a–c show the resulting minimum, maximum, and average scores awarded to each of the groups (G1–G5) for the three evaluation criteria. The scores have been converted to a 10-point scale for uniformity with Figures 2 a–c.
The graphs in the figures indicate that, again, most groups achieved better than average scores on all three evaluation criteria. If we ignore the poorest performing group (G1), it is apparent that while the technical prototypes were still well received, the average scores for business plans and business value evaluations show a definite improvement from the prior year.
The “Mobile App Development” course was developed in order to encourage cross-disciplinary, collaborative learning among students with diverse academic skills using a strong entrepreneurial framework. Students and faculty from three different colleges interact closely and synergistically in a project-driven course. This partnership among three colleges is one of the course’s main distinguishing features. The expectation is that through interaction with one another, students will be better able to appreciate the finer points of each other’s’ disciplines.

Another distinguishing feature is the platform agnosticism, with iOS, Android, and HTML5 being supported in equal measure. This is also the source of our biggest pedagogical challenge as we strive to keep students from different platforms engaged when their platform is not being discussed. While the journey so far has been challenging, continuous refinements to the course have made the goals quite attainable.

Formal assessment by means of student surveys in Figures 1 and 3 indicate that students value both the academic contributions and the entrepreneurial aspects of the course. Figure 5 demonstrates that the third offering of the course (in 2013) met its objectives better than the second offering (in 2012). Further, entrepreneurship-related outcomes were assessed using three specific evaluation criteria. In particular, using these evaluation criteria, feedback on the quality and business-readiness of student apps was provided by internal and external judges on pitch day at our university’s campus-wide entrepreneurial competition. Figures 2 a–c and 4 a–c indicate that the technical maturity of the apps was clearly evident to the judges in both the 2012 and 2013 offerings of the course. In addition, while the business maturity of the apps was somewhat lacking in 2012, targeted efforts during the course refinement process yielded better results in this area in 2013. The contribution of the entrepreneurial component was further evident when a cross-disciplinary student team from this class won an award in a 2013 Villanova University-wide entrepreneurship competition (out of forty participating teams) for an app developed as part of the class deliverable. Furthermore, entrepreneurial activities are encouraged and supported by an innovation center in the business school even after the course concludes.
An informal measure of a course’s success is its popularity and wide appeal. The mobile app development course has run successfully for three consecutive years with enrollment at 80% to 100% of capacity (30 students) and the fourth offering is now running at full capacity as well. Furthermore, the innovations introduced in the course won three of the instructors an award in entrepreneurship teaching and pedagogical innovation from the Global Consortium of Entrepreneurship Centers, a consortium of more than 200 university centers.

Lastly, we would like to note that, although we collected data both formally and informally on student learning, we did not have an explicit mechanism in place to collect data for faculty learning. Nevertheless, the lessons learned in the planning, design and refinement of this course and the complex logistics behind it were invaluable and were widely disseminated to the wider overall other faculty members of within Villanova University. While such a cross-disciplinary, entrepreneurship-focused course can prove to be rewarding to students and faculty alike, it does need significant administrative and material support from the university in order to make it successful.

References

